Deep Attention Based Semi-supervised 2D-Pose Estimation for Surgical Instruments

نویسندگان

چکیده

For many practical problems and applications, it is not feasible to create a vast accurately labeled dataset, which restricts the application of deep learning in areas. Semi-supervised algorithms intend improve performance by also leveraging unlabeled data. This very valuable for 2D-pose estimation task where data labeling requires substantial time subject noise. work aims investigate if semi-supervised techniques can achieve acceptable level that makes using these during training justifiable. To this end, lightweight network architecture introduced mean teacher, virtual adversarial pseudo-labeling are evaluated on surgical instruments. applicability pseudo-labelling algorithm, we propose novel confidence measure, total variation. Experimental results show utilization improves unseen geometries drastically while maintaining high accuracy seen geometries. RMIT benchmark, our outperforms state-of-the-art with supervised learning. Endovis algorithm baseline achieving new performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand pose estimation through semi-supervised and weakly-supervised learning

We propose a method for hand pose estimation based on a deep regressor trained on two different kinds of input. Raw depth data is fused with an intermediate representation in the form of a segmentation of the hand into parts. This intermediate representation contains important topological information and provides useful cues for reasoning about joint locations. The mapping from raw depth to seg...

متن کامل

GONet: A Semi-Supervised Deep Learning Approach For Traversability Estimation

We present semi-supervised deep learning approaches for traversability estimation from fisheye images. Our method, GONet, and the proposed extensions leverage Generative Adversarial Networks (GANs) to effectively predict whether the area seen in the input image(s) is safe for a robot to traverse. These methods are trained with many positive images of traversable places, but just a small set of ...

متن کامل

Model-Based Deep Hand Pose Estimation

Previous learning based hand pose estimation methods does not fully exploit the prior information in hand model geometry. Instead, they usually rely a separate model fitting step to generate valid hand poses. Such a post processing is inconvenient and sub-optimal. In this work, we propose a model based deep learning approach that adopts a forward kinematics based layer to ensure the geometric v...

متن کامل

Graph based semi-supervised human pose estimation: When the output space comes to help

In this letter, we introduce a semi-supervised manifold regularization framework for human pose estimation. We utilize the unlabeled data to compensate for the complexities in the input space and model the underlying manifold by a nearest neighbor graph. We argue that the optimal graph is a subgraph of the k nearest neighbors (k-NN) graph. Then, we estimate distances in the output space to appr...

متن کامل

Attention-based Graph Neural Network for Semi-supervised Learning

Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-68763-2_34